Some congruences for binomial coefficients. II

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Congruences Involving Binomial Coefficients

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that Tp−1 ≡ (p 3 ) 3p−1 (mod p), where the central trinomial coefficient Tn is the constant term in the expansion of (1 + x + x−1)n. We also prove three congruences modulo p conjectured by Sun, one of which is p−1 ∑ k=0 ( p− 1 k )( 2k k ) ((−1) − (−3)−k) ≡ (p 3 ) (3p−1 −...

متن کامل

On Some New Congruences for Binomial Coefficients

In this paper we establish some new congruences involving central binomial coefficients as well as Catalan numbers. Let p be a prime and let a be any positive integer. We determine ∑pa−1 k=0 ( 2k k+d ) mod p2 for d = 0, . . . , pa and ∑pa−1 k=0 ( 2k k+δ ) mod p3 for δ = 0, 1. We also show that

متن کامل

Some Super Congruences Involving Binomial Coefficients

Let p > 3 be a prime. We show that T p−1 ≡ p 3 3 p−1 (mod p 2), where the central trinomial coefficient T n is the constant term in the expansion of (1+x+x −1) n. We also prove three congruences conjectured by Sun one of which is as follows: p−1 k=0 p − 1 k 2k k ((−1) k − (−3) −k) ≡ p 3 (3 p−1 − 1) (mod p 3).

متن کامل

Some congruences involving central q-binomial coefficients

Motivated by recent works of Sun and Tauraso, we prove some variations on the Green-Krammer identity involving central q-binomial coefficients, such as n−1 ∑ k=0 (−1)kq−(k+1 2 ) [ 2k k ] q ≡ (n 5 ) q−bn 4/5c (mod Φn(q)), where ( n p ) is the Legendre symbol and Φn(q) is the nth cyclotomic polynomial. As consequences, we deduce that 3am−1 ∑

متن کامل

New Congruences for Central Binomial Coefficients

Let p be a prime and let a be a positive integer. In this paper we determine ∑pa−1 k=0 ( 2k k+d ) /mk and ∑p−1 k=1 ( 2k k+d ) /(kmk−1) modulo p for all d = 0, . . . , pa, where m is any integer not divisible by p. For example, we show that if p 6= 2, 5 then p−1 ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 2000

ISSN: 0386-2194

DOI: 10.3792/pjaa.76.104